

Dossier de recursos y medios con ejemplos de recursos TIC y audiovisuales aplicados en educación superior.

Unidad Recursos Digitales Docentes

Documento elaborado en la Vicerrectoría de Formación Universidad de Talca Talca, Chile 2025

Gastón Bustos Quintana

Coordinador Unidad de Recursos Digitales Docentes, Diseñador Instruccional

Felipe Muñoz

Profesional Audiovisual

Patricio Bravo

Encargado de Sala de Producción Audiovisual

Marco Centeno Dubén

Profesional de Aplicaciones Educativas

© Todos los derechos reservados. Prohibida su reproducción parcial o total sin autorización escrita de la Institución.

DOSSIER DE RECURSOS Y MEDIOS CON EJEMPLOS DE RECURSOS TIC Y AUDIOVISUALES APLICADOS EN EDUCACIÓN SUPERIOR.

1) RECURSO TIC: VEVOX	6
2) RECURSO TIC: MENTIMETER	7
3) RECURSO TIC: WOOCLAP	8
4) RECURSO TIC: NEARPOD	9
5) RECURSO TIC: EDPUZZLE	10
6) RECURSO TIC: EDUCAPLAY	11
7) RECURSO TIC: Wayground ANTERIORMENTE QUIZIZZ	12
8) RECURSO TIC: PEAR DECK LEARNING	13
9) RECURSO TIC: PHET SIMULATIONS	14
10) RECURSO TIC: H5P	15
11) Recurso TIC: Flip (Microsoft)	16
12) Recurso TIC: Slack/Teams (Canal Educativo Específico)	17
13) Recurso TIC: VoiceThread	18
14) Recurso TIC: Hypothesis	19
15) Recurso TIC: Quizlet	20
16) Recurso TIC: ThingLink	21
17) Recurso TIC: Diigo	22
18) Recurso TIC: Socrative	23
19) Recurso TIC: Plickers	24
20) Recurso TIC: MIRÓ	25

Introducción

Este dossier ha sido elaborado por la Dirección de Tecnologías Educativas de la Universidad de Talca con el propósito de ofrecer a la comunidad docente un panorama curado y práctico de recursos TIC y medios audiovisuales aplicables en educación superior.

Reúne herramientas orientadas a la interacción en clase, la evaluación formativa, la gamificación, la creación de contenido interactivo y la colaboración, acompañadas de casos de uso y pasos de implementación pedagógica. Más que un catálogo, este documento busca facilitar decisiones didácticas informadas. Por ello, cada recurso se presenta con:

- Enlace oficial y referencia a evidencia o literatura académica.
- Un contexto pedagógico sugerido (p. ej., diagnóstico, práctica guiada, evaluación formativa, aula invertida).
- Una secuencia de implementación en 12 pasos para transferir la herramienta al aula de manera gradual y significativa.
- Criterios de selección y uso responsable:
- Pertinencia para docencia universitaria, facilidad de adopción y disponibilidad.
- Evidencia de efectividad pedagógica reportada en estudios o reportes institucionales.
- Complementariedad con metodologías activas (aprendizaje basado en problemas, aula invertida, aprendizaje colaborativo).

Cómo leer y aplicar el dossier:

- Identifique la necesidad didáctica (p. ej., aumentar participación, evaluar comprensión, dinamizar contenidos).
- Seleccione una herramienta alineada a esa necesidad y adopte la secuencia propuesta como guía.
- Empiece con pilotos acotados, recoja retroalimentación estudiantil y escale progresivamente.
- Integre estas prácticas con el LMS institucional y con estrategias de evaluación coherentes con los resultados de aprendizaje.
- Este material es vivo y se actualizará conforme evolucionen las herramientas y las buenas prácticas.

La Unidad de Recursos Digitales Docentes está disponible para orientar y resolver dudas de procesos de diseño instruccional, de uso de tic de impacto en el aula universitaria.

INTERACCIÓN CON ALUMNOS

Esta categoría agrupa herramientas que permiten al docente recopilar retroalimentación en tiempo real, fomentar la participación activa y evaluar la comprensión de los estudiantes de manera instantánea durante una clase presencial, híbrida o en línea. Son ideales para romper el hielo, verificar el pulso del aula o iniciar discusiones.

- VEVOX
- MENTIMETER
- WOOCLAP

- NEARPOD
- Flip (Microsoft)
- Slack/Teams (Canal Educativo Específico)

INTERACCIÓN CON CONTENIDO

Estas herramientas están orientadas a hacer que el **contenido educativo sea más dinámico, participativo y adaptativo**, permitiendo a los estudiantes interactuar directamente con la información, probar su comprensión y aplicar conocimientos. Buscan transformar el consumo pasivo de contenido en un aprendizaje activo.

- EDPUZZLE
- EDUCAPLAY
- QUIZIZZ
- PEAR DECK LEARNING
- PHET SIMULATIONS
- H5P

PRESENTACIONES INTERACTIVAS

Esta categoría se enfoca en herramientas que van más allá de las presentaciones lineales tradicionales, permitiendo crear materiales visuales dinámicos, atractivos y con elementos de interacción que mantienen la atención del público y facilitan una mejor comprensión.

- GENIALLY
- CANVA
- PREZI
- CLASSFLOW
- INTUIFACE

GAMIFICACIÓN

Estas herramientas se utilizan para aplicar elementos y mecánicas de juego en contextos no lúdicos (como la educación) con el fin de motivar, involucrar y fomentar el aprendizaje. Buscan hacer el proceso educativo más divertido, desafiante y gratificante.

- GENIALLY
- VEDOQUE
- CEREBRITI
- KAHOOT
- <u>FLIPPITY</u>
- WORDWALL
- CODECOMBAT

1) RECURSO TIC: VEVOX

Es una plataforma de participación en tiempo real diseñada para fomentar la interacción activa en entornos educativos. Su objetivo es mejorar la comprensión, la inclusión y el compromiso estudiantil mediante herramientas como encuestas, cuestionarios y sesiones de preguntas y respuestas.

ENLACE: <u>HTTPS://WWW.VEVOX.COM/</u> LINK A PAPER: HTTPS://DOI.ORG/10.17561/AE.V24N2.7201

Contexto del Estudio de Caso: Aplicación en la enseñanza de la Microbiología para impulsar la participación y el compromiso estudiantil. El estudio se centra en cómo las herramientas de respuesta de la audiencia pueden facilitar la interacción, fomentar la inclusión y mejorar la retroalimentación en tiempo real en una clase con contenido altamente técnico.

Implementación Pedagógica (12 Pasos) Fase de Interacción en Clase (Microbiología):

- 1. Selección del Tema Crítico: El profesor identifica un concepto complejo de Microbiología (ej., ciclo de Krebs).
- 2. Diseño de Pregunta Vevox: Se crea una pregunta de opción múltiple de nivel taxonómico superior sobre el concepto.
- 3. Activación de Vevox: Al inicio de la clase, se muestra el ID de la sesión Vevox para que los estudiantes se unan (paso 1).
- 4. Lanzamiento de la Pregunta: Se proyecta la pregunta Vevox y se da un tiempo limitado para responder.
- 5. Recolección Anónima de Datos: Los estudiantes responden desde sus dispositivos de forma anónima (fomentando la inclusión).
- 6. Análisis Instantáneo de Resultados: El profesor analiza el gráfico de barras que muestra la distribución de respuestas.
- 7. Discusión Guiada: Si el porcentaje de acierto es bajo, se fomenta una breve discusión grupal sobre las opciones.
- 8. Re-lanzamiento de la Pregunta (Opcional): Se repite la pregunta para medir la comprensión después de la discusión.
- 9. Cierre Conceptual: El profesor aclara definitivamente el concepto de Microbiología basándose en las respuestas.
- 10. Encuesta de Pulso: Se lanza una breve encuesta Vevox (ej., escala de Likert) al final para medir la claridad del concepto.
- 11. Uso de Preguntas y Respuestas: Durante la semana, se activa la función de Q&A de Vevox para recibir dudas anónimas.
- 12. Seguimiento Analítico: El docente revisa el informe de Vevox para identificar los conceptos que generaron más confusión para la próxima clase.

2) RECURSO TIC: MENTIMETER

Mentimeter es una plataforma de presentaciones interactivas que permite integrar dinámicas participativas en tiempo real. Su objetivo es fomentar el aprendizaje activo, la reflexión colectiva y la evaluación formativa en diversos contextos educativos.

ENLACE: https://www.mentimeter.com/LINK A PAPER: https://doi.org/10.4995/INRED2024.2024.18021

Contexto del Estudio de Caso: Su uso en el aula universitaria como herramienta para el aprendizaje activo, enfocado en generar reflexión colectiva y evaluación formativa. El estudio explora cómo las presentaciones interactivas pueden romper la dinámica de clase tradicional y hacer que la voz del estudiante sea visible.

Implementación Pedagógica (12 Pasos) Fase de Diagnóstico y Reflexión (Cualquier Asignatura):

- 1. Objetivo de la Sesión: El docente define el objetivo de reflexión o diagnóstico (ej., conocimientos previos sobre un tema de ética).
- 2. Diseño de la Interacción: Se crean dos tipos de diapositivas Mentimeter: una Nube de Palabras y una Pregunta Abierta.
- 3. Introducción al Tema: Se presenta brevemente el tema central de la clase.
- 4. Activación de la Nube de Palabras: Se pide a los estudiantes que escriban 3 palabras clave que asocien al tema (diagnóstico de ideas previas).
- 5. Visualización Colectiva: La Nube de Palabras se forma en tiempo real, destacando los conceptos más comunes.
- 6. Debate Inicial: Se inicia un breve debate basado en las palabras clave que aparecieron con mayor frecuencia.
- 7. Lanzamiento de Pregunta Abierta: Se plantea una pregunta que requiere un análisis más profundo o reflexión personal.
- 8. Recolección y Lectura: El docente revisa las respuestas textuales y selecciona algunas para leer y comentar.
- 9. Síntesis: El profesor resume los puntos clave de las respuestas para conectar el diagnóstico con el contenido de la sesión.
- 10. Evaluación de Cierre: Se utiliza una Escala para medir el nivel de acuerdo o desacuerdo con una afirmación relacionada con el tema.
- 11. Exportación de Resultados: El docente descarga los datos de Mentimeter para analizarlos como evidencia formativa.
- 12. Ajuste Curricular: Se utiliza el *feedback* para ajustar la profundidad y el enfoque de las siguientes clases.

3) RECURSO TIC: WOOCLAP

Wooclap es una plataforma de interacción educativa que transforma presentaciones tradicionales en experiencias participativas. Su objetivo es fomentar el aprendizaje activo, la atención sostenida y la retroalimentación inmediata, tanto en entornos presenciales como virtuales.

ENLACE: https://www.wooclap.com/es/

LINK A PAPER: HTTPS://DOI.ORG/10.35564/JMBE.2024.0014

Contexto del Estudio de Caso: Aplicación en la enseñanza de la Contabilidad y Finanzas para fomentar la participación y el aprendizaje activo. Se estudia su eficacia para mantener la atención y proporcionar retroalimentación inmediata sobre ejercicios prácticos

Implementación Pedagógica (12 Pasos) Fase de Práctica y Evaluación (Contabilidad y Finanzas):

- 1. Preparación de Ejercicios: El profesor diseña un ejercicio práctico de contabilidad (ej., cálculo de ratios).
- 2. Configuración de Wooclap: Se configuran las opciones de 'Find the Error' y 'Multiple Choice' para el ejercicio.
- 3. Presentación de Caso: Se expone el caso de estudio o el balance que los estudiantes deben analizar.
- 4. Lanzamiento del 'Find the Error': Se pide a los alumnos que identifiquen dónde está el error de cálculo en un balance proyectado.
- 5. Recolección y Visualización: Los estudiantes señalan el punto incorrecto y el profesor ve el mapa de clics en la pantalla.
- 6. Discusión Dirigida: Se pide a un estudiante que haya marcado el punto correcto que explique su razonamiento.
- 7. Lanzamiento del 'Multiple Choice': Se lanza la pregunta de opción múltiple sobre el resultado final del cálculo (evaluación formativa).
- 8. Análisis de la Respuesta Correcta: El profesor explica el procedimiento correcto en detalle, utilizando el *feedback* de Wooclap.
- 9. Uso de Encuestas: Se utiliza una Encuesta de Wooclap para recoger preferencias sobre el próximo ejercicio práctico.
- 10. Modo Competencia (Opcional): Se utiliza el modo 'Competencia' al final de la clase para repasar términos clave de Finanzas.
- 11. Revisión Post-Clase: Los estudiantes pueden acceder al resumen de la presentación interactiva y los resultados.
- 12. Informe de Rendimiento: El docente utiliza el informe de Wooclap para medir la curva de aprendizaje en los temas de mayor dificultad.

4) RECURSO TIC: NEARPOD

Es una plataforma integral para la creación y gestión de lecciones interactivas, diseñada para transformar la experiencia de enseñanza-aprendizaje. Su objetivo es fomentar la participación activa, la retroalimentación inmediata y la personalización del aprendizaje en entornos presenciales, virtuales e híbridos.

ENLACE: https://nearpod.com/LINK A PAPER: https://doi.org/10.48204/j.centros.v14n1.a6601

Contexto del Estudio de Caso: Utilización en el aula universitaria para la gamificación y el desarrollo de competencias. Se busca transformar lecciones lineales en experiencias ricas que combinan contenido, actividades y evaluación en una sola plataforma.

Implementación Pedagógica (12 Pasos) Fase de Desarrollo de Lecciones (Híbrido/Presencial):

- 1. Definición del Módulo: El docente planifica una lección completa (ej., Fundamentos de Marketing Digital) en Nearpod.
- 2. Integración de Contenido: Se suben diapositivas tradicionales y se integran videos, simulaciones 3D o paseos virtuales.
- 3. Actividad de Introducción: Se inserta una actividad 'Draw It' (Dibujar) pidiendo a los alumnos dibujar un concepto clave.
- 4. Avance Asincrónico (Modo Estudiante): Los estudiantes revisan el contenido a su propio ritmo antes de la clase presencial.
- 5. Inicio de Clase (Modo Live): El docente sincroniza la clase para guiar la experiencia en tiempo real.
- 6. Lanzamiento de Pregunta Interactiva: Se inserta una pregunta de 'Respuesta Abierta' después de cada sección clave del contenido.
- 7. Tablero Colaborativo: Se utiliza la función 'Collaborate Board' para que los estudiantes compartan recursos o ideas sobre un caso.
- 8. Gamificación: Se inserta la actividad 'Time to Climb' (Juego) para evaluar la comprensión del contenido de la primera mitad.
- 9. Monitoreo Docente: El profesor usa el panel de Nearpod para ver el progreso individual y las respuestas de cada estudiante.
- 10. Retroalimentación Individualizada: El docente puede enviar *feedback* específico a un estudiante sobre su respuesta 'Draw It'.
- 11. Ejercicio Práctico: Se inserta un PDF o un sitio web en Nearpod para que los estudiantes trabajen en el aula sin salir de la plataforma.
- 12. Seguimiento Pos-Clase: El docente revisa los informes de Nearpod para planificar tutorías con los estudiantes que tuvieron bajo rendimiento.

5) RECURSO TIC: EDPUZZLE

Edpuzzle es una plataforma que permite transformar videos en lecciones interactivas, integrando preguntas, comentarios y seguimiento del aprendizaje. Su objetivo es potenciar el aprendizaje autónomo, personalizado y basado en evidencias, especialmente útil en modelos de aula invertida y educación híbrida.

ENLACE: https://edpuzzle.com/LINK A PAPER: 10.9743/JSE.2021.4.1.10

Contexto del Estudio de Caso: Estudio de caso sobre su uso en la metodología de Aula Invertida (Flipped Classroom). Se evalúa cómo el seguimiento individualizado del video puede optimizar el tiempo de clase para discusiones y aplicación.

Implementación Pedagógica (12 Pasos) Fase de Aula Invertida (Flipped Classroom):

- 1. Selección del Video: El docente elige un video clave (propio o de YouTube) sobre el tema a invertir.
- 2. Edición del Video: El profesor recorta el video y añade su propia voz en off para personalizar la explicación.
- 3. Inserción de Preguntas: Se añaden preguntas de opción múltiple y abiertas en puntos críticos del video.
- 4. Asignación a la Clase: El video interactivo se asigna a los estudiantes a través de Edpuzzle como tarea previa a la clase.
- 5. Visualización y Respuesta: Los estudiantes ven el video antes de la sesión y responden a las preguntas incrustadas.
- 6. Control de Avance (Docente): El profesor monitoriza el porcentaje de visualización y las respuestas de cada alumno en el panel de Edpuzzle.
- 7. Identificación de Dificultades: Se identifican las preguntas que la mayoría de los estudiantes fallaron.
- 8. Optimización del Tiempo de Clase: La clase presencial se inicia directamente abordando las dudas y los errores comunes identificados.
- 9. Aplicación Práctica: El tiempo de clase se dedica enteramente a ejercicios, resolución de problemas y debates, sin repetición teórica.
- 10. Revisión de Notas (Docente): El docente usa las notas que dejaron los alumnos en el video como punto de partida para una discusión.
- 11. Retroalimentación Automática: Los estudiantes reciben feedback automático en las preguntas de opción múltiple.
- 12. Cierre de Ciclo: El profesor utiliza los datos de Edpuzzle para evaluar la eficacia del video como contenido base y reajustar el material si es necesario.

6) RECURSO TIC: EDUCAPLAY

Es una plataforma de creación de actividades educativas gamificadas que permite diseñar experiencias interactivas para reforzar contenidos, evaluar aprendizajes y dinamizar el aula. Su objetivo es aumentar la motivación, la retención y la participación del estudiantado mediante el juego educativo.

ENLACE: https://es.educaplay.com/LINK A PAPER: https://doi.org/10.23857/dc.v11i1.4311

Contexto del Estudio de Caso: Su utilidad en el contexto de la docencia universitaria para aumentar la motivación, la retención y la participación estudiantil. Se enfoca en la creación de experiencias gamificadas para reforzar contenidos.

Implementación Pedagógica (12 Pasos) Fase de Refuerzo y Gamificación (Post-Clase):

- 1. Identificación de Contenido a Reforzar: El profesor selecciona un módulo (ej., terminología técnica) que requiere memorización.
- 2. Creación de la Actividad: Se elige un formato lúdico en Educaplay, como un Crucigrama o un Relacionar Columnas.
- 3. Inclusión de Contenidos: Se introducen los términos y las definiciones o pistas necesarias para el juego.
- 4. Configuración de Dificultad: Se ajusta el tiempo, el número de vidas y el modo de dificultad para el nivel universitario.
- 5. Integración en LMS: El juego se incrusta directamente en la plataforma Moodle o Canvas de la asignatura.
- 6. Asignación como Tarea Opcional: Se asigna la actividad como un refuerzo auto-evaluable o una preparación para el examen.
- 7. Instrucciones Claras: Se instruye a los estudiantes sobre cómo acceder y que el objetivo es la práctica, no la nota.
- 8. Participación de los Alumnos: Los estudiantes acceden y juegan de forma individualizada para autoevaluar su conocimiento.
- 9. Recolección de Datos de Rendimiento: El profesor revisa el panel de Educaplay para ver qué alumnos han participado y sus resultados.
- 10. Fomento de la Competencia (Opcional): Se publican los 3 mejores tiempos o puntajes para motivar a otros a practicar.
- 11. Revisión de Errores Comunes: Se revisan en la siguiente clase los 2 o 3 conceptos que generaron más fallos en el juego.
- 12. Reutilización: Se modifica o reutiliza el recurso en el siguiente ciclo académico, actualizando la terminología según sea necesario.

7) RECURSO TIC: Wayground ANTERIORMENTE QUIZIZZ

Wayground es una plataforma digital diseñada para crear actividades interactivas y gamificadas, orientada a docentes que buscan dinamizar sus clases y aumentar la participación estudiantil. Su objetivo es facilitar la creación de experiencias educativas atractivas sin necesidad de conocimientos técnicos avanzados.

ENLACE: https://wayground.com/LINK A PAPER: https://doi.org/10.21432/cjlt28449

Contexto del Estudio de Caso: Aplicación y evaluación en la enseñanza en el nivel superior. Se destaca su capacidad para medir el conocimiento de manera divertida y proporcionar *feedback* instantáneo tanto al alumno como al docente.

Implementación Pedagógica (12 Pasos), Fase de Evaluación Formativa Gamificada:

- 1. Definición del Objetivo de Evaluación: El profesor establece qué conocimientos del capítulo se evaluarán de forma formativa.
- 2. Creación del Quizizz: Se crea un cuestionario con preguntas de opción múltiple con respuestas correctas y explicaciones.
- 3. Asignación del Modo: El docente elige el modo 'Asignación' (deber) para que los alumnos lo hagan a su ritmo o 'En Vivo' para el aula.
- 4. Acceso a la Sesión: Los estudiantes ingresan al código de la sesión de Quizizz/Wayground.
- 5. Participación Individual: Los alumnos responden las preguntas de forma individual, recibiendo feedback inmediato al fallar.
- 6. Gamificación y Motivación: Los alumnos ven una tabla de clasificación (Leaderboard) que se actualiza constantemente (si es modo en vivo).
- 7. Monitoreo en Tiempo Real (Docente): El profesor observa el avance de la clase, viendo un mapa de calor de las respuestas.
- 8. Pausa para Debate: El docente detiene el quiz momentáneamente para abordar una pregunta donde hay mucha confusión.
- 9. Descarga del Informe: Al finalizar, se descarga el informe detallado que segmenta los resultados por estudiante y por pregunta.
- 10. Clasificación de Dificultades: Se identifican las 3 preguntas que tuvieron el menor porcentaje de acierto de toda la clase.
- 11. Dedicación al Refuerzo: Se dedican los últimos 10 minutos de clase a repasar solo los temas identificados como débiles.
- 12. Evaluación de Impacto: Se compara el rendimiento en la evaluación sumativa posterior con el rendimiento en el Quizizz formativo.

8) RECURSO TIC: PEAR DECK LEARNING

Pear Deck es una herramienta para crear presentaciones interactivas que promueven el aprendizaje activo y colaborativo. Su objetivo es transformar clases tradicionales en experiencias participativas, permitiendo a los docentes evaluar la comprensión en tiempo real y fomentar la reflexión individual y grupal.

ENLACE: https://www.peardeck.com/

LINK A PAPER: <u>HTTPS://DOI.ORG/10.25304/RLT.V31.2944</u>

Contexto del Estudio de Caso: Evaluación del uso en la docencia de la Educación Superior. Se enfatiza su valor para transformar presentaciones estáticas (como PowerPoint o Google Slides) en experiencias totalmente interactivas y colaborativas.

Implementación Pedagógica (12 Pasos): Fase de Presentación Interactiva (Google Slides/PowerPoint):

- 1. Preparación de la Presentación Base: El docente crea una presentación tradicional en Google Slides o PowerPoint.
- 2. Inserción de Interacciones: Usando el complemento Pear Deck, se insertan diapositivas interactivas (Dibujo, Texto, Número, Arrastrar).
- 3. Definición del Objetivo: Se planea un flujo que pase de la teoría a la aplicación y a la reflexión personal.
- 4. Inicio de la Sesión: El profesor lanza la presentación en modo 'Instructor-Paced' y comparte el código de acceso.
- 5. 'Draw It' Inicial: Se pide a los estudiantes que dibujen un diagrama para representar un proceso teórico (ej., ciclo de vida de un producto).
- 6. Revisión Anónima: El docente proyecta de forma anónima algunos de los dibujos creados por los alumnos para iniciar la discusión. 1
- 7. Recolección de Datos Numéricos: Se utiliza el deslizador de 'Number Slide' para recolectar opiniones sobre una escala de valores.
- 8. Preguntas de Reflexión: Se inserta un 'Text Slide' pidiendo la opinión personal sobre un estudio de caso.
- 9. Retroalimentación Oculta: Mientras los estudiantes trabajan, el docente puede dar *feedback* individual y privado desde su panel.
- 10. Trabajo Asincrónico: Se utiliza el modo 'Student-Paced' para que los estudiantes repasen la presentación después de clase.
- 11. Exportación de Sesión: El profesor utiliza la función 'Takeaways' para enviar una copia de la presentación con las respuestas del alumno.
- 12. Mejora Continua: Se revisan los *Takeaways* para comprender las percepciones individuales y ajustar las preguntas de la próxima sesión

9) RECURSO TIC: PHET SIMULATIONS

PhET Simulations es una colección de simulaciones interactivas diseñadas para enseñar conceptos de ciencias y matemáticas mediante la exploración visual, la manipulación directa y la experimentación virtual. Su objetivo es facilitar la comprensión profunda de fenómenos complejos a través de entornos accesibles, intuitivos y basados en evidencia pedagógica.

ENLACE: https://phet.colorado.edu/es/LINK A PAPER: https://doi.org/10.4995/HEAd25.2025.20078

Contexto del Estudio de Caso: Estudio de su uso como estrategia para la enseñanza virtual de conceptos complejos de Física o Química. Se destaca la capacidad de la simulación para permitir la manipulación de variables y la experimentación sin riesgo.

Implementación Pedagógica (12 Pasos): Fase de Laboratorio Virtual y Conceptualización (Ciencias):

- 1. Definición del Experimento: El profesor selecciona una simulación específica de PhET (ej., Electromagnetismo) para la clase.
- 2. Diseño de la Guía de Laboratorio: Se crea una guía de actividades estructurada con preguntas de predicción, observación y conclusión.
- 3. Introducción al Fenómeno: En la clase sincrónica, el profesor introduce brevemente los conceptos teóricos básicos.
- 4. Acceso a la Simulación: Se proporciona el enlace a la simulación y se indica a los estudiantes que trabajen de forma individual.
- 5. Predicción Inicial: Se pide a los alumnos que registren sus predicciones en la Guía de Laboratorio (pre-laboratorio).
- 6. Manipulación de Variables: Los estudiantes manipulan las variables de la simulación (voltaje, resistencia, etc.) para observar los efectos.
- 7. Registro de Observaciones: Los alumnos registran datos, capturas de pantalla o diagramas dentro de la Guía de Laboratorio.
- 8. Descubrimiento Guiado: El docente pasa por las salas virtuales o monitorea el aula, resolviendo dudas sin dar la respuesta.
- 9. Análisis de Resultados: Se les pide que comparen sus predicciones iniciales con sus resultados de la simulación.
- 10. Sesión Plenaria de Resultados: Los estudiantes presentan y debaten sus hallazgos, explicando por qué las variables afectan el fenómeno.
- 11. Conclusión Conceptual: El docente utiliza la simulación en la pantalla para consolidar el concepto, ligando la práctica a la teoría.
- 12. Evaluación de Competencia: Se asigna una tarea final de PhET donde deben resolver un problema complejo manipulando la simulación y justificando su solución.

10) RECURSO TIC: H5P

H5P (HTML5 Package) es una herramienta de autor que permite crear, compartir y reutilizar contenido educativo interactivo directamente en navegadores web. Su objetivo es enriquecer la experiencia de aprendizaje mediante actividades multimedia, evaluaciones formativas y recursos gamificados, todo sin necesidad de programación

ENLACE: https://h5p.org/

LINK A PAPER: HTTPS://DOI.ORG/10.35631/IJMOE.724069

Contexto del Estudio de Caso: Un estudio de caso sobre la implementación de H5P en el aprendizaje en línea (e-learning). Se valora su naturaleza abierta y su versatilidad para crear múltiples tipos de contenido interactivo directamente integrable en el LMS.

Implementación Pedagógica (12 Pasos), Fase de Creación y Distribución de Contenido E-learning:

- 1. Análisis de Módulo LMS: Se identifica un módulo teórico extenso en la plataforma virtual (LMS) que necesita dinamismo.
- 2. Selección de Contenido H5P: Se eligen tres tipos de actividad H5P (ej., Video Interactivo, Drag and Drop y Acordeón Interactivo).
- 3. Creación del Video Interactivo: Se sube un video y se incrustan preguntas formativas o ventanas emergentes de explicación.
- 4. Creación del 'Drag and Drop': Se diseña un ejercicio de arrastrar y soltar para clasificar conceptos complejos.
- 5. Creación del 'Acordeón': Se usa el formato Acordeón para compactar información densa en secciones expandibles.
- 6. Integración en la Plataforma: Los recursos H5P se incrustan directamente en la página del módulo LMS con código *embed*.
- 7. Asignación de Uso: Se indica a los alumnos que interactúen con los contenidos antes de la fecha límite.
- 8. Navegación Autónoma: Los estudiantes exploran el contenido de forma autónoma, con *feedback* instantáneo de H5P.
- 9. Seguimiento del LMS: El profesor monitoriza la finalización del recurso H5P mediante las herramientas de seguimiento del LMS.
- 10. Recolección de Puntajes: Se configura H5P para enviar los puntajes de las actividades a la libreta de calificaciones del LMS (opcional).
- 11. Discusión en Foro: Se inicia un foro en el LMS pidiendo a los alumnos reflexionar sobre un aspecto del Video Interactivo.
- 12. Mantenimiento y Actualización: El docente revisa anualmente los recursos H5P para garantizar la vigencia del contenido y su accesibilidad.

11) Recurso TIC: Flip (Microsoft)

Plataforma de video-discusión asíncrona que fomenta la reflexión y la respuesta a casos, ideal para la práctica oral y habilidades de presentación.

Link: https://info.flip.com

DOI: 10.1016/j.cptl.2023.04.017 https://pubmed.ncbi.nlm.nih.gov/37127463/

Contexto del Estudio de Caso: Su uso para promover la discusión crítica y la práctica de habilidades de comunicación en un curso de posgrado. Se destaca su naturaleza asíncrona y la comodidad del formato video.

Implementación Pedagógica (12 Pasos), Fase de Práctica Asíncrona de Habilidades de Comunicación:

- 1. Definición del Desafío: El docente asigna un caso de estudio complejo que requiere una respuesta argumentada y profesional.
- 2. Creación del Tópico en Flip: Se crea un nuevo tema en Flip con las instrucciones claras, el caso de estudio y el tiempo máximo de video (ej., 3 minutos).
- 3. Modelo de Respuesta: El profesor graba un video modelo o proporciona una rúbrica detallada sobre la calidad esperada.
- 4. Grabación del Estudiante: Los estudiantes graban y suben su respuesta en video de forma individualizada (asíncrona).
- 5. Comentarios de Pares: Se habilita la función para que los estudiantes comenten los videos de al menos 3 de sus compañeros. 6. Uso de Herramientas de *Feedback*: Los comentarios de los pares se enfocan en la claridad, el lenguaje no verbal y el argumento.
- 7. Revisión Docente: El profesor revisa los videos y utiliza la herramienta de *feedback* directo para puntuar según la rúbrica.
- 8. Retroalimentación Formativa: El docente envía retroalimentación privada enfocada en mejorar las habilidades de presentación oral.
- 9. Respuesta en Video: El docente puede grabar un video de respuesta consolidado a los temas comunes surgidos en la discusión.
- 10. Reflexión sobre el *Feedback*: Se pide a los estudiantes que registren por escrito cómo aplicarán el *feedback* recibido en el siguiente video.
- 11. Archivo de Discusión: Al terminar el módulo, el *grid* de videos se archiva para que los estudiantes revisen su progreso.
- 12. Práctica Recurrente: La actividad se repite periódicamente para evaluar la mejora progresiva de las habilidades de comunicación crítica.

12) Recurso TIC: Slack/Teams (Canal Educativo Específico)

Uso disciplinado de plataformas de comunicación profesional por canales para la gestión de grandes proyectos, mentoría de posgrado y consultas específicas.

Link: https://slack.com/intl/es-cl/

DOI: https://www.sciencedirect.com/science/article/pii/S0360131514000608?via%3Dihub

https://www.mdpi.com/2227-7102/12/2/87

Contexto del Estudio de Caso: Estudios de caso sobre el uso de Slack/Teams para la colaboración en cursos universitarios y la comunicación docente-estudiante, enfocándose en la gestión de proyectos grandes.

Implementación Pedagógica (12 Pasos): Fase de Gestión y Comunicación de Proyectos Colaborativos (Posgrado):

- 1. Creación del Espacio: Se crea un canal específico o un equipo dentro de Slack/Teams para la asignatura o el proyecto.
- 2. Definición de Canales: Se crean canales temáticos (ej., #dudas_generales, #bibliografia_clave, #equipo_A).
- 3. Establecimiento de Netiqueta: Se definen reglas claras de comunicación (tiempos de respuesta, tono formal, uso de *hil*os).
- 4. Gestión de Proyectos Grupales: Se pide a cada grupo de estudiantes que cree su propio canal privado de trabajo.
- 5. Comunicación Directa (Docente): El profesor utiliza el canal público para anuncios oficiales y recordatorios.
- 6. Mentoría Asíncrona: El docente entra en los canales de grupo privados para ofrecer guía o resolver dudas específicas de mentoría.
- 7. Uso de Hilos (Threads): Se enseña a los estudiantes a usar los *hilos* para mantener las conversaciones ordenadas por tema.
- 8. Integración de Herramientas: Se integran herramientas de gestión de tareas (ej., Trello, Asana) con el canal de Teams/Slack.
- 9. Curación de Contenido: Los estudiantes comparten enlaces, documentos y referencias clave en los canales temáticos.
- 10. Reducción del E-mail: Se establece el canal como la vía principal de comunicación, reduciendo la dependencia del correo electrónico.
- 11. Registro de Decisiones: Se utiliza la función de búsqueda para rastrear decisiones tomadas o feedback dado en sesiones anteriores.
- 12. Evaluación de Competencia Colaborativa: Se evalúa, como parte del proyecto, la participación activa y el uso adecuado de la herramienta de comunicación.

13) Recurso TIC: VoiceThread

Herramienta de colaboración multimedia asíncrona que permite a los estudiantes y profesores dejar comentarios de audio, video y texto sobre documentos o presentaciones

Link; https://voicethread.com/

Paper: https://bera-journals.onlinelibrary.wiley.com/doi/10.1111/bjet.12536

Contexto del Estudio de Caso: Investigación sobre su valor para mejorar la comunicación y el compromiso en la educación superior. Se enfoca en la colaboración multimedia asíncrona sobre documentos o presentaciones.

Implementación Pedagógica (12 Pasos), Fase de Comentarios y Discusión de Trabajos (Asíncrono):

- 1. Selección del Material: El profesor sube una presentación de diapositivas o un documento clave que requiere análisis.
- 2. Introducción al Documento: El profesor deja un comentario introductorio de video o audio para enmarcar el análisis del material.
- 3. Configuración de Permisos: Se configura el VoiceThread para que los estudiantes puedan dejar comentarios y ver los de los demás.
- 4. Asignación del Análisis: Se pide a los estudiantes que dejen un mínimo de 3 comentarios (texto, audio o video) en puntos específicos de la presentación.
- 5. Comentario de Audio (Docente): El docente utiliza el comentario de audio para dar retroalimentación a un estudiante en particular sobre su trabajo.
- 6. Participación de los Alumnos: Los estudiantes interactúan con el material, dejando comentarios sobre las ideas de los compañeros.
- 7. Desarrollo de Argumentación: Los alumnos responden a los comentarios de sus compañeros, creando un hilo de debate asíncrono.
- 8. Monitoreo de Participación: El profesor utiliza el panel de VoiceThread para medir la cantidad y calidad de las contribuciones.
- 9. Cierre Conceptual: El profesor graba un último comentario de video en la diapositiva final para resumir los puntos clave de la discusión.
- 10. Uso en Proyectos Grupales: Los grupos pueden usar VoiceThread para crear sus propias presentaciones y recibir comentarios de la clase.
- 11. Evaluación de la Calidad: Se evalúa la profundidad del análisis y la claridad de la expresión oral/escrita en los comentarios dejados.
- 12. Adaptación a Casos de Estudio: Se utiliza VoiceThread para subir un caso de estudio visual y que los estudiantes graben sus diagnósticos iniciales.

14) Recurso TIC: Hypothesis

Plataforma de anotación colaborativa web que permite a los estudiantes interactuar directamente con artículos de revista o documentos, dejando notas y entablando debates textuales críticos.

Link: https://web.hypothes.is/

Artículo: https://www.carleton.edu/its/services/learning/hypothesis/

Contexto del Estudio de Caso: Descripción de su implementación en un contexto universitario para la anotación y el debate crítico en línea de artículos académicos. Se centra en la lectura social y activa.

Implementación Pedagógica (12 Pasos), Fase de Lectura Social y Crítica de Literatura Académica:

- 1. Selección del Artículo Clave: El profesor identifica un *paper* fundamental (PDF o HTML) para la unidad.
- 2. Configuración del Grupo: Se crea un grupo privado en Hypothesis para la clase (o se integra con el LMS, ej., Canvas).
- 3. Instrucciones de Anotación: Se asigna la lectura y se pide a los alumnos que realicen tres tipos de anotaciones obligatorias: Preguntas, Conexiones a Lecturas Previas y Resumen de Párrafo.
- 4. Lectura Activa: Los estudiantes leen el artículo y usan la extensión Hypothesis para resaltar texto y dejar sus notas.
- 5. Interacción de Pares: Los estudiantes pueden ver las anotaciones de sus compañeros y responder directamente a ellas, iniciando debates textuales.
- 6. Participación Docente: El profesor interviene en las anotaciones para corregir interpretaciones erróneas o plantear preguntas adicionales.
- 7. Identificación de Puntos Calientes: El docente revisa qué párrafos o secciones generaron la mayor cantidad de anotaciones (puntos de conflicto/interés).
- 8. Preparación para la Clase: Se utiliza la información recopilada para planificar el debate en la clase presencial/sincrónica.
- 9. Clase Invertida Asistida: La clase se dedica a profundizar solo en los puntos de mayor discusión o confusión, ya anotados.
- 10. Curación de Glosario: Se utiliza una etiqueta específica (ej., #Glosario) para que los alumnos anoten términos clave y sus definiciones.
- 11. Revisión del Argumento Central: Se pide a los alumnos que, en una sola anotación al final del texto, resuman el argumento central del autor.
- 12. Evaluación de Calidad: Se evalúa la calidad y profundidad de las anotaciones dejadas, más allá de la cantidad.

15) Recurso TIC: Quizlet

Herramienta de estudio basada en *flashcards* digitales y modos de aprendizaje (Learn, Test) fundamentados en la ciencia cognitiva para mejorar la retención y el recuerdo activo.

Link: https://quizlet.com/es

Artículo: https://jurnal.usk.ac.id/SiELE/article/view/15359

Contexto del Estudio de Caso: Estudio sobre la mejora del rendimiento y la motivación mediante el uso de Quizlet. Se enfoca en la retención y el recuerdo activo, aplicando principios de la ciencia cognitiva como el espaciado y la recuperación.

Implementación Pedagógica (12 Pasos), Fase de Retención y Recuperación (Lenguas Extranjeras/Terminología):

- 1. Identificación de Vocabulario: El profesor de idioma identifica las 100 palabras o frases clave del módulo.
- 2. Creación del Set de Flashcards: El docente crea el conjunto de tarjetas en Quizlet, incluyendo definiciones, imágenes o contexto.
- 3. Asignación de Modos de Estudio: Se recomienda a los alumnos usar los modos 'Aprender' (Learn), 'Probar' (Test) y 'Gravedad' (Gravity).
- 4. Práctica Espaciada: Se les aconseja estudiar el set en sesiones cortas y espaciadas a lo largo de la semana.
- 5. Uso del Modo 'Probar': Los estudiantes usan el modo 'Probar' para simular un examen y autoevaluar su preparación.
- 6. Fomento del Recuerdo Activo: El modo 'Escribir' (Write) obliga a los alumnos a recordar la palabra sin ver la respuesta, reforzando la retención.
- 7. Juego Competitivo: El docente utiliza 'Quizlet Live' en la clase sincrónica para repasar el vocabulario de forma grupal y competitiva.
- 8. Monitoreo de Progreso: El profesor puede revisar las estadísticas de los alumnos (si usan la función de clase) para ver la frecuencia de estudio.
- 9. Identificación de Palabras Difíciles: Se identifican las tarjetas que han sido más falladas por el grupo.
- 10. Refuerzo en Clase: El docente dedica tiempo a contextualizar las palabras que resultaron más difíciles en Quizlet.
- 11. Creación Propia de Sets: Se les pide a los estudiantes que creen y compartan sus propios sets de *flashcards* sobre un tema de difícil comprensión.
- 12. Evaluación Final: Se observa la correlación entre la frecuencia de uso de Quizlet y el rendimiento en la evaluación sumativa de vocabulario.

16) Recurso TIC: ThingLink

Creación de imágenes, videos y recorridos virtuales interactivos mediante la inserción de puntos de información (*hotspots*) que enriquecen el contenido visual.

Link: https://www.thinglink.com

Artículo: https://revistasdigitales.upec.edu.ec/index.php/sathiri/article/view/1279

Contexto del Estudio de Caso: Aplicación para la creación de contenido interactivo en el entorno virtual de aprendizaje. Se explora cómo los *hotspots* enriquecen la información visual, haciendo más atractivo el estudio de casos o el análisis de espacios.

Implementación Pedagógica (12 Pasos), Fase de Análisis de Material Visual Enriquecido (Arquitectura/Medicina):

- 1. Selección de Imagen/Recorrido: El profesor selecciona una imagen clave (ej., un plano arquitectónico, un diagrama anatómico).
- 2. Creación del Recurso en ThingLink: Se sube la imagen al sistema de ThingLink.
- 3. Inclusión de *Hotspots*: Se añaden puntos interactivos (*hotspots*) sobre elementos específicos de la imagen.
- 4. Enriquecimiento del Contenido: Cada *hotspot* se enlaza a una definición, un video explicativo, una pregunta o un PDF (multimedia).
- 5. Integración en LMS: El contenido interactivo se inserta en el aula virtual de la asignatura.
- 6. Exploración Autónoma: Los estudiantes exploran la imagen, haciendo clic en los *hotspots* para acceder a la información contextualizada.
- 7. Tarea de Exploración Guiada: Se pide a los alumnos que respondan a preguntas cuyas respuestas solo se encuentran al hacer clic en un *hotspot* específico.
- 8. Creación Propia (Competencia): Se les asigna a los estudiantes la tarea de crear su propio ThingLink sobre un tema.
- 9. Fomento de la Investigación: Los alumnos deben usar *hotspots* para enlazar sus propias fuentes y referencias académicas.
- 10. Uso de Recorridos Virtuales: Se utiliza la opción de *Tour* 360 para analizar un espacio físico real de la universidad o un hospital.
- 11. Evaluación de la Creación: Se evalúa la calidad del contenido multimedia, la coherencia de los enlaces y la usabilidad del ThingLink creado por los alumnos.
- 12. Feedback Visual: El docente utiliza ThingLink para dar feedback visual a un trabajo, señalando con un hotspot las áreas a corregir en una imagen.

17) Recurso TIC: Diigo

Herramienta de marcadores sociales y anotación, esencial para la curación de información académica, el archivo de recursos y la investigación grupal compartida.

Link: https://www.diigo.com/

Artículo: https://portalinvestigacion.uniovi.es/documentos/5e57af232999527d991b0f1c

Contexto del Estudio de Caso: Evaluación como herramienta de marcación social en la investigación y el aprendizaje colaborativo. Esencial para la curación de información académica y la investigación grupal compartida.

Implementación Pedagógica (12 Pasos), Fase de Curación y Colaboración en Investigación (Seminarios):

- 1. Definición del Tema de Investigación: El grupo de estudiantes define un tema de seminario que requiere una revisión bibliográfica extensa.
- 2. Creación del Grupo Diigo: El profesor crea un grupo privado en Diigo para el equipo de investigación o la clase.
- 3. Instalación del Marcador: Los estudiantes instalan la extensión de Diigo en su navegador.
- 4. Búsqueda y Marcado: A medida que investigan, los alumnos usan Diigo para marcar, etiquetar y archivar las páginas web relevantes.
- 5. Anotación Colaborativa: Se utiliza la función de 'Highlight' y 'Sticky Notes' para dejar comentarios o resúmenes sobre los artículos.
- 6. Compartición Automática: Todos los recursos guardados y anotados son automáticamente visibles para los miembros del grupo Diigo.
- 7. Revisión Docente: El profesor accede al grupo para monitorear los recursos que están marcando los estudiantes y su calidad.
- 8. Identificación de Lagunas: El docente identifica las áreas del tema que tienen poca bibliografía marcada por el grupo y pide reforzar esa búsqueda.
- 9. Uso de Etiquetas Comunes: Se define una estructura de etiquetas (ej., #Metodologia, #Resultados_Clave) para organizar el repositorio común. 1
- 0. Creación de 'Outliners': Los alumnos usan la función 'Outliner' de Diigo para estructurar las notas y crear el esquema del informe de investigación.
- 11. Presentación de Recursos: El grupo presenta su repositorio de Diigo en clase para justificar la selección de las fuentes bibliográficas.
- 12. Evaluación de la Curación: Se evalúa la calidad y diversidad de las fuentes marcadas, así como la coherencia de las etiquetas y anotaciones colaborativas.

18) Recurso TIC: Socrative

Herramienta de evaluación formativa rápida, que ofrece *quizzes* estructurados y la actividad *space race*, sirviendo como una alternativa formal a las herramientas de juego rápido.

Link: https://www.socrative.com/

Artículo: https://revistas.uned.es/index.php/ried/article/view/31182

Contexto del Estudio de Caso: Su uso en la evaluación del aprendizaje en un contexto de educación superior. Se enfoca en el *quizzing* rápido y la actividad 'Space Race' para la evaluación formativa y sumativa ligera.

Implementación Pedagógica (12 Pasos), Fase de Evaluación Formativa Estructurada (Clase Sincrónica):

- 1. Diseño del Examen Rápido: El profesor diseña un cuestionario de 10 preguntas en Socrative sobre los conceptos vistos la semana anterior.
- 2. Activación del Cuestionario: Se activa el quiz y se comparte el código de la sala Socrative con los estudiantes.
- 3. Configuración de *Feedback*: Se configura el quiz en modo 'Retroalimentación Inmediata' para que el alumno sepa si acertó al instante.
- 4. Lanzamiento de la 'Space Race': Se lanza la actividad 'Space Race' para que los estudiantes, divididos en equipos, compitan para responder. 5. Monitoreo del Tablero: El docente monitorea el progreso de los equipos en la carrera espacial y el porcentaje de respuestas correctas.
- 6. Pausa para la Clarificación: El profesor puede pausar la carrera para aclarar una pregunta que fue fallada por la mayoría de los equipos.
- 7. Recolección de la 'Salida del Aula': Al final de la sesión, se utiliza la función 'Exit Ticket' (Billete de Salida) para que los alumnos resuman 1 concepto clave y 1 pregunta pendiente.
- 8. Informe de Resultados: Se descarga el informe de Socrative que muestra el rendimiento individual y por pregunta.
- 9. Identificación de Puntos Ciegos: Se utiliza el informe para identificar las áreas del contenido que requieren ser reforzadas en la próxima clase.
- 10. Uso de Preguntas Verdadero/Falso: Se utiliza un sencillo 'True/False' para iniciar la siguiente clase y repasar el material previo.
- 11. Retroalimentación al Grupo: Se comparte con el grupo (sin identificar alumnos) el resumen de las preguntas más falladas para promover la autocrítica.
- 12. Biblioteca de Cuestionarios: El docente organiza y reutiliza los cuestionarios probados de Socrative en su biblioteca para ciclos futuros.

19) Recurso TIC: Plickers

Sistema de respuesta de audiencia que utiliza tarjetas impresas y la cámara del profesor para recolectar datos, útil en aulas universitarias con desafíos de conectividad o acceso a dispositivos.

Link: https://get.plickers.com/

Artículo: https://riunet.upv.es/entities/publication/98352d36-1037-4e9d-85d1-8a5ae2dcd1ef

Contexto del Estudio de Caso: Estudio de caso sobre su utilización en la Educación Superior. Se valora especialmente en aulas numerosas o con acceso limitado a dispositivos/conectividad, ya que solo requiere el móvil del docente.

Fase de Evaluación Rápida en Aulas Masivas (Presencial):

- 1. Asignación de Tarjetas: El profesor entrega a cada estudiante una tarjeta Plickers única y les explica cómo usarla (rotar para A, B, C o D).
- 2. Preparación del Set de Preguntas: Se preparan 5 preguntas de opción múltiple sencillas en la aplicación Plickers.
- 3. Presentación de la Pregunta: El profesor proyecta la primera pregunta en la pantalla del aula.
- 4. Respuesta Física del Alumno: Los estudiantes sostienen su tarjeta Plickers en alto, rotándola para mostrar la opción elegida.
- 5. Escaneo Docente: El profesor usa la aplicación de su móvil para escanear rápidamente todas las tarjetas del aula. 6. Visualización Instantánea: La aplicación muestra al instante el número de respuestas por opción, sin revelar nombres (anonimato).
- 7. Análisis de Resultados: El docente analiza el resultado de la clase para ver qué porcentaje acertó.
- 8. Debate Rápido: Si la respuesta correcta no es la predominante, se fomenta un breve debate grupal antes de revelar la respuesta.
- 9. Revisión del Informe: El profesor revisa el informe para ver cómo respondió cada estudiante de forma individual.
- 10. Diferenciación: Los estudiantes que respondieron mal reciben una atención o material de refuerzo específico en la próxima clase.
- 11. Uso como Billete de Entrada: Se utiliza una pregunta Plickers al inicio de la clase como 'Billete de Entrada' para verificar la lectura previa.
- 12. Almacenamiento de Datos: El profesor utiliza los informes para hacer un seguimiento del rendimiento de la clase sin necesidad de exámenes formales en cada sesión.

20) Recurso TIC: MIRÓ

Pizarras blancas digitales colaborativas de gran formato. Esenciales para sesiones de *design thinking*, mapas conceptuales complejos y la planificación de proyectos grupales.

LINK: <u>HTTPS://MIRO.COM/ES/</u>

ARTICULO:HTTPS://DIALNET.UNIRIOJA.ES/SERVLET/ARTICULO?CODIGO=9141209

Contexto del Estudio de Caso: Evaluación de su uso como herramienta de innovación pedagógica para la colaboración y el aprendizaje activo, especialmente en sesiones de *design thinking* y planificación de proyectos complejos.

Implementación Pedagógica (12 Pasos), Fase de *Design Thinking* y Mapeo Colaborativo (Proyectos Grupales):

- 1. Definición del Desafío: El docente presenta un desafío o problema de diseño complejo que requiere una solución creativa.
- 2. Creación del Tablero Miro: Se crea un tablero en Miro con plantillas predefinidas (ej., Mapa Conceptual, Diagrama de Flujo, Lienzo de Design Thinking).
- 3. Acceso al Tablero: Los estudiantes acceden al tablero mediante un enlace, todos trabajando simultáneamente.
- 4. Brainstorming Silencioso: Se pide a los estudiantes que utilicen 'Sticky Notes' para generar ideas de forma individual en 5 minutos.
- 5. Agrupación de Ideas: Los estudiantes colaboran para mover y agrupar las ideas similares en clusters temáticos.
- 6. Votación de Prioridades: Se utiliza la herramienta de votación de Miro para que los estudiantes voten las ideas más viables o innovadoras.
- 7. Creación de Diagramas: Los grupos utilizan las herramientas de dibujo y conexión para mapear el flujo del proceso o la solución propuesta. 8. *Feedback* Visual Docente: El profesor navega por los distintos *frames* del tablero y deja comentarios o marca con iconos las áreas clave.
- 9. Presentación en el Tablero: Los grupos presentan su trabajo y su proceso navegando por su sección del tablero Miro.
- 10. Seguimiento Asíncrono: Los estudiantes pueden seguir trabajando en el tablero después de la clase, registrando su avance.
- 11. Archivo de la Sesión: El tablero se guarda como un registro visual de todo el proceso creativo y las decisiones tomadas.
- 12. Evaluación del Proceso: Se evalúa la contribución individual de los estudiantes (uso de notas, diagramas) y la coherencia del mapeo grupal final.

La integración estratégica de TIC y recursos audiovisuales puede transformar la experiencia de aprendizaje cuando está guiada por propósitos pedagógicos claros y evidencia. Este dossier ofrece rutas concretas para iniciar, iterar y consolidar prácticas activas centradas en el estudiante.

Próximos pasos sugeridos:

- Implementar un piloto breve con una herramienta por asignatura y medir su efecto (participación, comprensión, satisfacción).
- Compartir resultados y materiales en instancias de comunidad docente para favorecer la mejora colectiva.
- Escalar progresivamente las prácticas que demuestren mayor impacto y sostenibilidad.

Les invitamos a seguir explorando, documentando y difundiendo experiencias para fortalecer la calidad de la docencia universitaria en nuestra institución.

Unidad de Recursos Digitales Docentes Dirección de Tecnologías Educativas Vicerrectoría de Formación Universidad de Talca Talca, Chile · 2025

Dirección de Tecnologías Educativas Vicerrectoría de Formación

DIRECCIÓN DE TECNOLOGÍAS EDUCATIVAS | UNIVERSIDAD DE TALCA